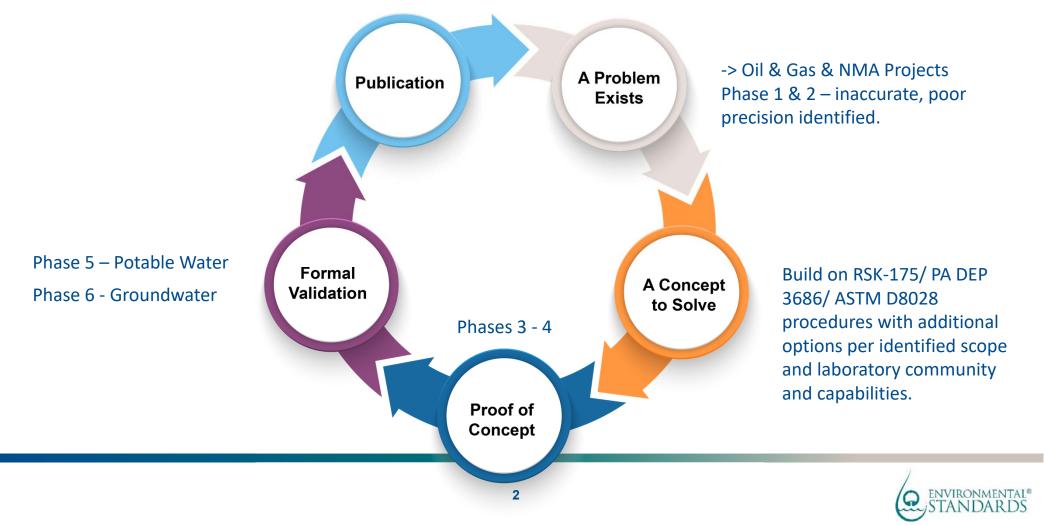
Assessing Analytical Issues and Improving/Remediating Those Issues


David A. Gratson, CEAC Senior Technical Chemist

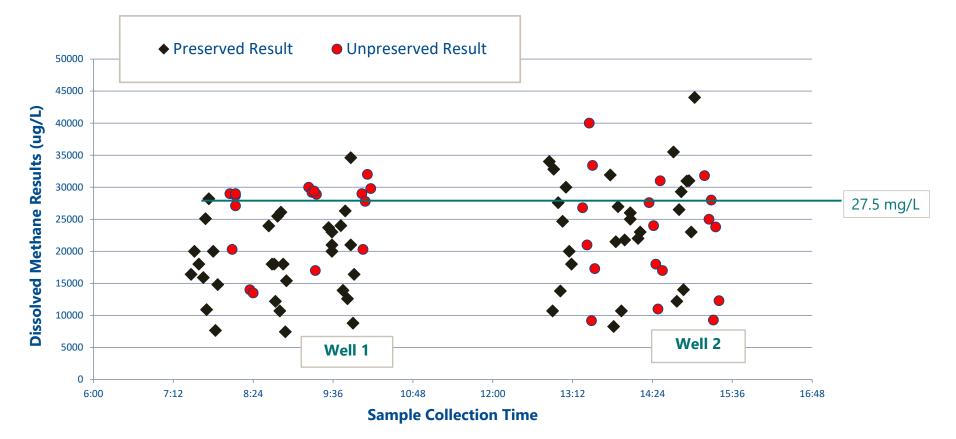
R. Vitale, S. Brower, L. Work contributed with support from the Marcellus Shale Coalition

August 2021

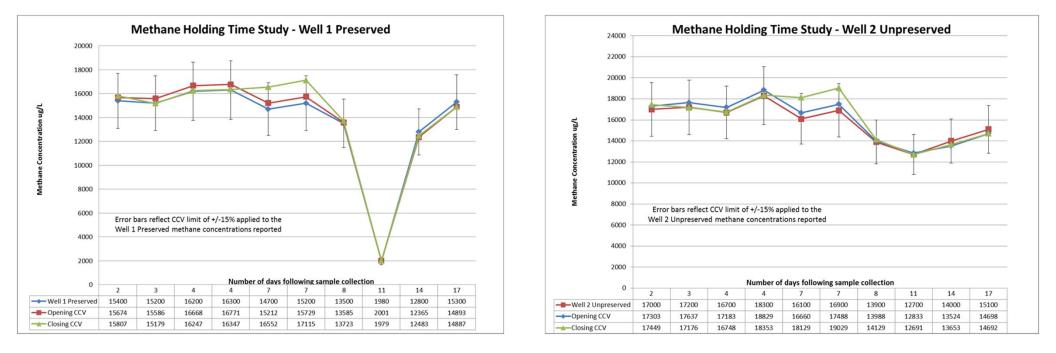
The Road to a Published Method

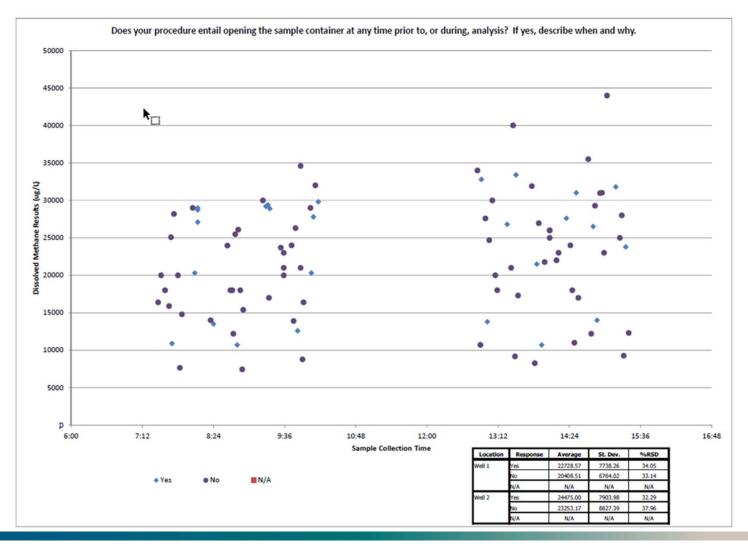
Formal Validation – Phases 5 & 6

- Demonstrate method to measure analytes in matrix of concern at concentrations of concern.
- Is there an anticipated need for this method?
 - Currently, approximately 35 commercial analytical laboratories in the U.S. provide measurement for dissolved light gases. Most reference US EPA SOP RSK 175, or PA DEP 3686.
- Is this "method" significantly different in principle or approach from existing published methods?
 - Static Headspace
 - US EPA 5021 does not have sufficient prescriptive steps; shaking for only 2 minutes has been shown to be insufficient (Phase 3). Insufficient to ensure equilibrium and static temperature and pressure.
 - GC/FID and/or TCD
 - US EPA 8015 is an assemblage started as direct aqueous injection, then added volatile, extractables ...
 - Citing SOP RSK-175 has proven to be unreliable, need a single method with preparation and determination included.

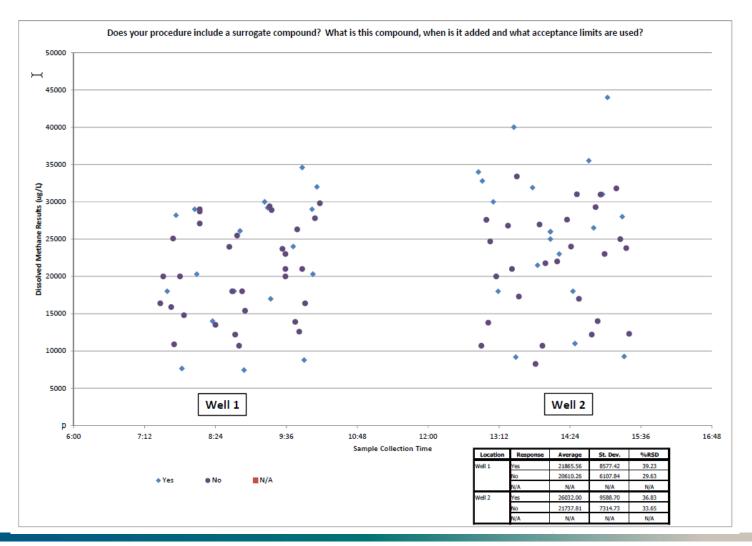

Phase 1

- 15 laboratories
- 2 GW Sources
- 102 Question Survey laboratory techniques associated with handling, storage, preparation, determination
 - Most laboratories open vial during preparation.
 - 6 of 15 included a surrogate compound, 1 of 15 included an internal standard compound.
- No apparent correlation of dilution factor to reported concentration and bias
- Holding Time Study
 - One laboratory selected based on keeping vial closed during preparation
 - Preserved with HCI and unpreserved
 - No real difference between preserved and unpreserved

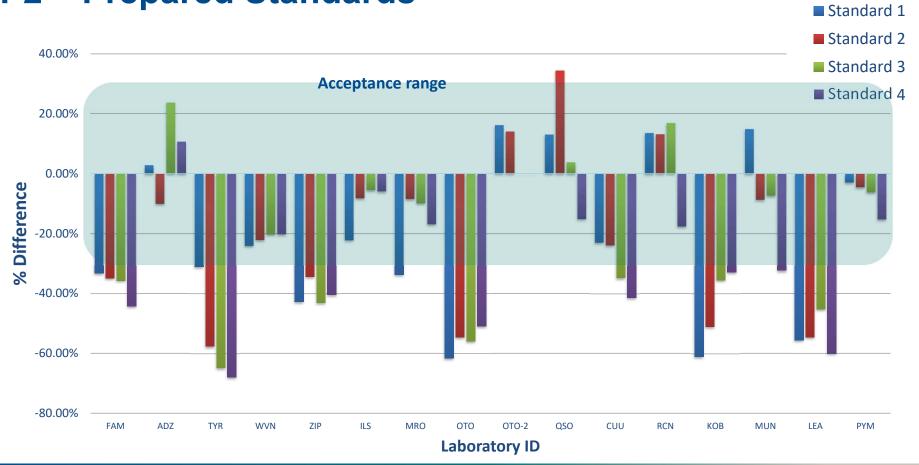




Holding Time Study

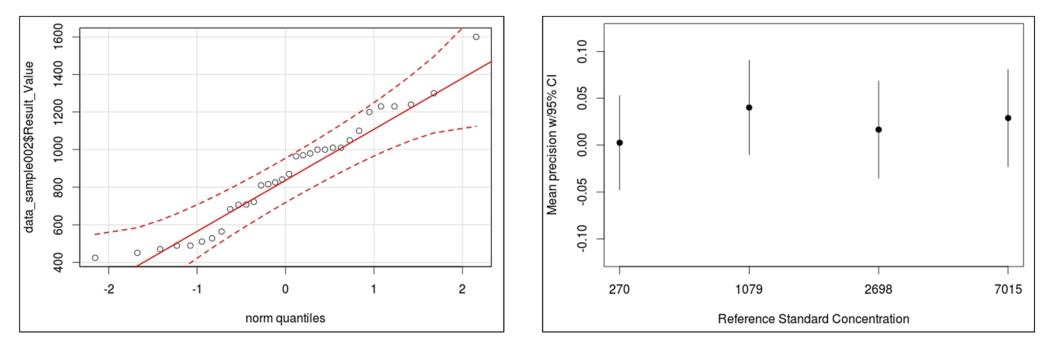


See also ASTM D8028-17 Appendix X1 study



P2 – Prepared Standards

9

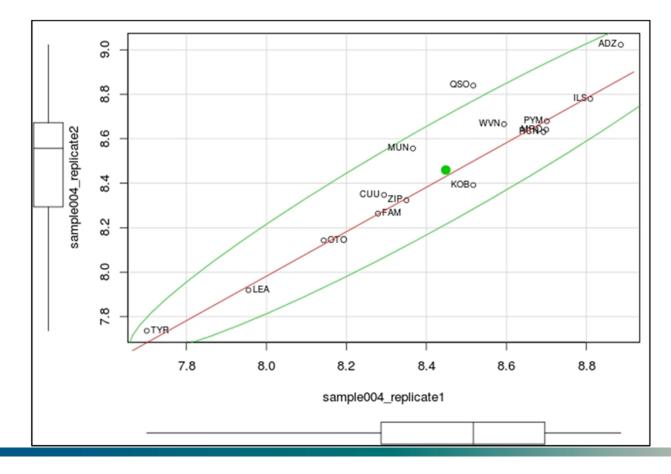

P2 – Statistical Analysis – Appendix to Report

- Normality and distribution assessment
- Analysis of variance heterogeneity (scedasticity)
- Assessment of difference between standard pair
- Evaluation of within and across laboratory precision

P2 – Statistical Analysis

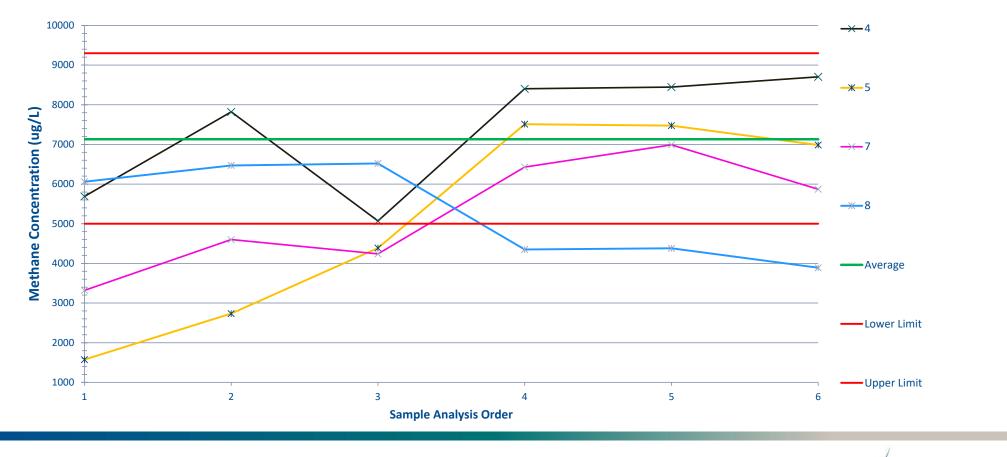
Standard Concentration = 1,079 µg/L

- Normal distribution


Mean variance consistent with concentration

Precision vs. Concentration

P2 – Statistical Analysis (Cont.)


The Youden-style plot for Reference Standard Concentration = 7,015 μg/L

A 45-degree reference line is shown in red, a 95% bivariate confidence ellipse (green lines) based on the actual results is shown to provide an approximate index as to the degree of expected spread, and a Tukey box plot of each duplicate pair member's distribution is shown on the corresponding axis.

P3 – Self Diagnose – Proof of Concept

13

STANDARDS

P4 – Proof of Concept → Procedure

- Collect in chlorobutyl rubber septa (see ASTM D8028-17 App X1)
- Static headspace
- Three calibration options using GC and FID, TCD, or MS detector
 - Direct-gas injection*
 - Saturated aqueous standards
 - Prepare in vial with headspace (predominant)
- Initial Demonstration of Proficiency, Precision, Accuracy, Sensitivity (ongoing also - LLOQ)
- Equilibration time and steps prescriptive

* Limited use by laboratory community, removed from P6 procedure.

P4 – Proof of Concept → Procedure (Cont.)

- CRM provides accuracy assessment that allows for validation and accreditation.
- QC Requirements
 - ICAL Average RF, or if linear regression or a quadratic model is used, the use of RE and RSE shall be employed.
 - ICV, CCV, LCS, LB, replicates.
 - Surrogates are optional, but highly recommended.
 - Matrix spikes are optional, but highly recommended.
 - Internal standards are optional.
 - GC resolution and retention time specifications.
 - Monitor for carryover.

Phase 5 – Potable Laboratory Water

CRM: Precision and Bias

	CRM #1				CRM #2			
Analyte	Number of Laboratories	Average Recovery (%)	Standard Deviation of Recovery	% recovery within 70- 130%	Number of Laboratories	Average Recovery (%)	Standard Deviation of Recovery	% recovery within 70- 130%
Methane	12	99.6%	16.9%	91.7%	12	99.5%	20.0%	91.7%
Ethane	9	92.2%	16.2%	77.8%	9	89.4%	14.9%	77.8%
Ethene	8	93.7%	22.9%	75.0%	8	92.6%	22.2%	75.0%
Propane	7	88.5%	12.6%	85.7%	7	84.5%	11.5%	85.7%

CRM from LGC Standards

CRM #1 in mg/L Methane – 5.21±0.9	Ethane – 5.60±0.6	Ethene – 4.68±0.4	<mark>n</mark> -Propane − 6.11±0.5
CRM #2 in mg/L Methane – 6.25±1	Ethane – 6.65±0.6	Ethene – 5.68±0.5	<mark>n</mark> -Propane − 6.92±0.5

Phase 5 – Potable Laboratory Water

PT Standards (methane only)

- Reproducibility % Standard Deviation
- Estimated bias percentage of laboratories within 70-130% recover

	200 ug/L						
Analyte	Number of Laboratories	Average Recovery (%)	Standard Deviation of Recovery	% recovery within 70- 130%			
Methane	12	96.4%	10.8%	100%			
	5000 ug/L						
Analyte	Number of Laboratories	Average Recovery (%)	Standard Deviation of Recovery	% recovery within 70- 130%			
Methane	12	87.6%	17.5%	86.5%			
	11000 ug/L						
Analyte	Number of Laboratories	Average Recovery (%)	Standard Deviation of Recovery	% recovery within 70- 130%			
Methane	12	92.5%	18.6%	88.9%			
	23000 ug/L						
Analyte	Number of Laboratories	Average Recovery (%)	Standard Deviation of Recovery	% recovery within 70- 130%			
Methane	12	95.5%	27.7%	86.1%			

Phase 6 – Groundwater Matrix Validation

- Design
 - 7+ laboratories including 2 government
 - Only saturated water and spiking headspace calibrations will be included – no direct gas injection
 - 2 Geochemically different groundwater sources
 - 2 Different concentrations of MEEP analytes
 - Triplicate analysis at each concentration and of each source
 - CRMs
 - MS/MSD vials available

Phases 1 - 6

- Measurement of dissolved light gases applicable to natural monitored attenuation projects and oil and gas activities
- Identification of analytical problem poor accuracy and precision
- Identification of analytical factors causing problems (P3)
- Prescriptive analytical procedure with QC requirements to address potential interferences
- Sensitivity from individual laboratories calibration and detection and reporting limits
 - Single-digit µg/L detection meets NMA project requirements
 - Calibration up to saturation meets oil and gas related project requirements
- Method optimized in P3, ruggedness tested via work in P1, P5 and in works via P6 with two groundwater sources
- Accuracy, precision, reproducibility data from P5 planned with P6 with replicates, two concentrations
- Suitable for potable (validated) and groundwater (in progress) matrices

Thank You Questions?

David A. Gratson, CEAC Senior Technical Chemist

505.660.8521 dgratson@envstd.com P.O. Box 29432 Santa Fe, NM 87592

